بهبود طبقه بندی طیفی-مکانی تصاویر ابرطیفی با به کارگیری اطلاعات مکانی در انتخاب نشانه ها

Authors

  • داود اکبری دانشجوی دکتری سنجش از دور، گروه مهندسی نقشه برداری، دانشگاه تهران
  • سعید همایونی استادیار سنجش از دور، گروه جغرافیا، دانشگاه اوتاوا، کانادا
  • عبدالرضا صفری دانشیار گروه ژئودزی، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشگاه تهران
Abstract:

فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه‌ بندی پوشش‌ های زمین و بررسی تغییرات آنها است. معمولترین روش جهت طبقهبندی تصاویر ابرطیفی، طبقه‌ بندی مبتنی بر پیکسل بوده که در آن هر پیکسل فقط با اطلاعات طیفی خود و بدون در نظر گرفتن پیکسل های همسایه، به کلاس مشخصی اختصاص می‌ یابد. پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توأم از اطلاعات طیفی و مکانی را در طبقه‌ بندی تصاویر ابرطیفی ایجاب می‌ کند. در این تحقیق روشی جدید برای طبقه‌ بندی طیفی-مکانی تصاویر ابرطیفی و بر اساس الگوریتم قطعه‌ بندی هرمیمبتنی بر نشانه معرفی میشود. در میان الگوریتمهای مختلف طبقهبندی طیفی-مکانی تصاویر ابرطیفی، تاکنون الگوریتم قطعهبندی هرمی مبتنی بر نشانه در ترکیب با الگوریتم طبقه‌ بندی ماشین بردار پشتیبان به بهترین نتایج دست یافته است. در روش پیشنهادی برای انتخاب نشانهها از ترکیب قطعهبندی واترشد (Watershed)و طبقهبندی ماشین بردار پشتیبان استفاده میشود. برای این منظور از میان پیکسلهای با بیشترین جمعیت برای هر ناحیه از نقشه قطعهبندی، آنهایی که دارای بالاترین درجه تعلق به یک کلاس هستند، به عنوان نشانه انتخاب میگردند. سپس بر روی نشانه‌ های بدست آمده، الگوریتم قطعهبندی هرمی پیادهسازی میشود. در نهایت نقشه قطعه‌ بندی بدست آمده به کمک قانون تصمیم رأی اکثریت با نقشه طبقهبندی ماشین بردار پشتیبان ترکیب می‌ گردد. روش پیشنهادی بر روی سه تصویر ابرطیفی Pavia، Berlin و DC Mall پیادهسازی شد، نتایج آزمایشات بدست آمده برتری روش پیشنهادی را در مقایسه با الگوریتم هرمی مبتنی بر نشانه اولیه نشان میدهد. این برتری برابر با 4، 6 و 5 درصد در پارامتر ضریب کاپا و به ترتیب برای تصاویر  Pavia، Berlin و DC Mall میباشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی

فن‌آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه­بندی پوشش‌های زمین و بررسی تغییرات آنها می‌باشد. با پیشرفت‌های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه­ بندی تصاویر ابرطیفی ایجاب می‌کند. در این تحقیق سعی می‌گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...

full text

تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی

فن آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه­بندی پوشش های زمین و بررسی تغییرات آنها می باشد. با پیشرفت های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه­ بندی تصاویر ابرطیفی ایجاب می کند. در این تحقیق سعی می گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریت...

full text

بهبود طبقه بندی طیفی- مکانی جنگل پوشای مینیمم با کاهش ابعاد تصاویر فراطیفی

فن‌آوری سنجش از دور فراطیفی دارای کاربردهای فراوان در طبقه‌بندی پوشش‌های زمین و بررسی تغییرات آنها است. با پیشرفت‌های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه‌بندی تصاویر فراطیفی ایجاب می‌کند. در این تحقیق روشی جدید جهت طبقه‌بندی طیفی-مکانی تصاویر فراطیفی به کمک الگوریتم جنگل پوشای مینیمم ( MSF) مبتنی بر نشانه‌ها که یکی از دقیق‌ترین الگ...

full text

ناحیه بندی تصاویر ابرطیفی با به کارگیری ویژگی های طیفی-مکانی

سنسورهای سنجش از دور ابرطیفی، با اخذ تصویر در چند صد طول موج مختلف، احتمال تفکیک پذیری مواد موجود در صحنه را نسبت به تصاویر چند طیفی افزایش داده و امکان طبقه بندی تصویر در تعداد کلاس های بیشتر و با دقت بالاتر را فراهم می آورند. بااین وجود، مشکلات ناشی از ابعاد بالای تصاویر ابرطیفی در بعد طیفی، موجب ناکارآمدی روشهای متداول طبقه بندی تصاویر چندطیفی در این تصاویر می شود (نفرین ابعاد). برای حل این ...

حسگری فشرده تصاویر ابرطیفی با دسته‌بندی طیفی و بازسازی با تنظیم‌کننده تغییرات کلی طیفی- مکانی

در این مقاله با توجه به همبستگی باندهای طیفی یک تصویر ابرطیفی، ابتدا این باندها را بر اساس ضرایب همبستگی دسته‌بندی می‌کنیم. سپس با استفاده از همبستگی مکانی بین پیکسل‌های یک تصویر ابرطیفی و به‌کارگیری دسته‌بندی مذکور، یک روش حسگری فشرده طیفی-مکانی را با دسته‌بندی طیفی برای تصاویر ابرطیفی پیشنهاد می‌نماییم. برای بازسازی این تصاویر، روش تنظیم‌کننده تغییرات کلی طیفی-مکانی پیشنهاد می‌شود که در آن عل...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 25  issue 98

pages  5- 14

publication date 2016-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023